Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Connecting iron regulation and mitochondrial function in Cryptococcus neoformans.

Identifieur interne : 000184 ( Main/Exploration ); précédent : 000183; suivant : 000185

Connecting iron regulation and mitochondrial function in Cryptococcus neoformans.

Auteurs : Linda C. Horianopoulos [Canada] ; James W. Kronstad [Canada]

Source :

RBID : pubmed:31085406

Descripteurs français

English descriptors

Abstract

Iron acquisition is essential for the proliferation of microorganisms, and human pathogens such as the fungus Cryptococcus neoformans must use sophisticated uptake mechanisms to overcome host iron sequestration. Iron is of particular interest for C. neoformans because its availability is an important cue for the elaboration of virulence factors. In fungi, extracellular iron is taken up through high affinity, low affinity, siderophore-mediated, and heme uptake pathways, and the details of these mechanisms are under active investigation in C. neoformans. Following uptake, iron is transported to intracellular organelles including mitochondria where it is used in heme biosynthesis and the synthesis of iron-sulfur (Fe-S) cluster precursors. One Fe-S cluster binding protein of note is the monothiol glutaredoxin Grx4 which has emerged as a master regulator of iron sensing in C. neoformans and other fungi through its influence on the expression of proteins for iron uptake or use. The activity of Grx4 likely occurs through interactions with Fe-S clusters and transcription factors known to control expression of the iron-related functions. Although the extent to which Grx4 controls the iron regulatory network is still being investigated in C. neoformans, it is remarkable that it also influences the expression of many genes encoding mitochondrial functions. Coupled with recent studies linking mitochondrial morphology and electron transport to virulence factor elaboration, there is an emerging appreciation of mitochondria as central players in cryptococcal disease.

DOI: 10.1016/j.mib.2019.04.002
PubMed: 31085406
PubMed Central: PMC6842668


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Connecting iron regulation and mitochondrial function in Cryptococcus neoformans.</title>
<author>
<name sortKey="Horianopoulos, Linda C" sort="Horianopoulos, Linda C" uniqKey="Horianopoulos L" first="Linda C" last="Horianopoulos">Linda C. Horianopoulos</name>
<affiliation wicri:level="4">
<nlm:affiliation>Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kronstad, James W" sort="Kronstad, James W" uniqKey="Kronstad J" first="James W" last="Kronstad">James W. Kronstad</name>
<affiliation wicri:level="4">
<nlm:affiliation>Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada. Electronic address: kronstad@msl.ubc.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31085406</idno>
<idno type="pmid">31085406</idno>
<idno type="doi">10.1016/j.mib.2019.04.002</idno>
<idno type="pmc">PMC6842668</idno>
<idno type="wicri:Area/Main/Corpus">000143</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000143</idno>
<idno type="wicri:Area/Main/Curation">000143</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000143</idno>
<idno type="wicri:Area/Main/Exploration">000143</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Connecting iron regulation and mitochondrial function in Cryptococcus neoformans.</title>
<author>
<name sortKey="Horianopoulos, Linda C" sort="Horianopoulos, Linda C" uniqKey="Horianopoulos L" first="Linda C" last="Horianopoulos">Linda C. Horianopoulos</name>
<affiliation wicri:level="4">
<nlm:affiliation>Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kronstad, James W" sort="Kronstad, James W" uniqKey="Kronstad J" first="James W" last="Kronstad">James W. Kronstad</name>
<affiliation wicri:level="4">
<nlm:affiliation>Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada. Electronic address: kronstad@msl.ubc.ca.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Current opinion in microbiology</title>
<idno type="eISSN">1879-0364</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biological Transport (MeSH)</term>
<term>Cryptococcus neoformans (metabolism)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Iron (metabolism)</term>
<term>Iron-Sulfur Proteins (metabolism)</term>
<term>Metabolic Networks and Pathways (MeSH)</term>
<term>Mitochondria (metabolism)</term>
<term>Trace Elements (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cryptococcus neoformans (métabolisme)</term>
<term>Fer (métabolisme)</term>
<term>Ferrosulfoprotéines (métabolisme)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Mitochondries (métabolisme)</term>
<term>Oligoéléments (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Transport biologique (MeSH)</term>
<term>Voies et réseaux métaboliques (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutaredoxins</term>
<term>Iron</term>
<term>Iron-Sulfur Proteins</term>
<term>Trace Elements</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cryptococcus neoformans</term>
<term>Mitochondria</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cryptococcus neoformans</term>
<term>Fer</term>
<term>Ferrosulfoprotéines</term>
<term>Glutarédoxines</term>
<term>Mitochondries</term>
<term>Oligoéléments</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Transport</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Metabolic Networks and Pathways</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régulation de l'expression des gènes fongiques</term>
<term>Transport biologique</term>
<term>Voies et réseaux métaboliques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Iron acquisition is essential for the proliferation of microorganisms, and human pathogens such as the fungus Cryptococcus neoformans must use sophisticated uptake mechanisms to overcome host iron sequestration. Iron is of particular interest for C. neoformans because its availability is an important cue for the elaboration of virulence factors. In fungi, extracellular iron is taken up through high affinity, low affinity, siderophore-mediated, and heme uptake pathways, and the details of these mechanisms are under active investigation in C. neoformans. Following uptake, iron is transported to intracellular organelles including mitochondria where it is used in heme biosynthesis and the synthesis of iron-sulfur (Fe-S) cluster precursors. One Fe-S cluster binding protein of note is the monothiol glutaredoxin Grx4 which has emerged as a master regulator of iron sensing in C. neoformans and other fungi through its influence on the expression of proteins for iron uptake or use. The activity of Grx4 likely occurs through interactions with Fe-S clusters and transcription factors known to control expression of the iron-related functions. Although the extent to which Grx4 controls the iron regulatory network is still being investigated in C. neoformans, it is remarkable that it also influences the expression of many genes encoding mitochondrial functions. Coupled with recent studies linking mitochondrial morphology and electron transport to virulence factor elaboration, there is an emerging appreciation of mitochondria as central players in cryptococcal disease.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31085406</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>07</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-0364</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>52</Volume>
<PubDate>
<Year>2019</Year>
<Month>12</Month>
</PubDate>
</JournalIssue>
<Title>Current opinion in microbiology</Title>
<ISOAbbreviation>Curr Opin Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Connecting iron regulation and mitochondrial function in Cryptococcus neoformans.</ArticleTitle>
<Pagination>
<MedlinePgn>7-13</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S1369-5274(18)30090-0</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.mib.2019.04.002</ELocationID>
<Abstract>
<AbstractText>Iron acquisition is essential for the proliferation of microorganisms, and human pathogens such as the fungus Cryptococcus neoformans must use sophisticated uptake mechanisms to overcome host iron sequestration. Iron is of particular interest for C. neoformans because its availability is an important cue for the elaboration of virulence factors. In fungi, extracellular iron is taken up through high affinity, low affinity, siderophore-mediated, and heme uptake pathways, and the details of these mechanisms are under active investigation in C. neoformans. Following uptake, iron is transported to intracellular organelles including mitochondria where it is used in heme biosynthesis and the synthesis of iron-sulfur (Fe-S) cluster precursors. One Fe-S cluster binding protein of note is the monothiol glutaredoxin Grx4 which has emerged as a master regulator of iron sensing in C. neoformans and other fungi through its influence on the expression of proteins for iron uptake or use. The activity of Grx4 likely occurs through interactions with Fe-S clusters and transcription factors known to control expression of the iron-related functions. Although the extent to which Grx4 controls the iron regulatory network is still being investigated in C. neoformans, it is remarkable that it also influences the expression of many genes encoding mitochondrial functions. Coupled with recent studies linking mitochondrial morphology and electron transport to virulence factor elaboration, there is an emerging appreciation of mitochondria as central players in cryptococcal disease.</AbstractText>
<CopyrightInformation>Copyright © 2019 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Horianopoulos</LastName>
<ForeName>Linda C</ForeName>
<Initials>LC</Initials>
<AffiliationInfo>
<Affiliation>Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kronstad</LastName>
<ForeName>James W</ForeName>
<Initials>JW</Initials>
<AffiliationInfo>
<Affiliation>Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada. Electronic address: kronstad@msl.ubc.ca.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI053721</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>MOP-13234</GrantID>
<Agency>CIHR</Agency>
<Country>Canada</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>05</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Curr Opin Microbiol</MedlineTA>
<NlmUniqueID>9815056</NlmUniqueID>
<ISSNLinking>1369-5274</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014131">Trace Elements</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003455" MajorTopicYN="N">Cryptococcus neoformans</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="N">Metabolic Networks and Pathways</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014131" MajorTopicYN="N">Trace Elements</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>01</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>04</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>04</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pmc-release">
<Year>2020</Year>
<Month>12</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>5</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>5</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31085406</ArticleId>
<ArticleId IdType="pii">S1369-5274(18)30090-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.mib.2019.04.002</ArticleId>
<ArticleId IdType="pmc">PMC6842668</ArticleId>
<ArticleId IdType="mid">NIHMS1527015</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell Microbiol. 2019 Mar;21(3):e12961</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30291809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2018 Nov 6;9(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30401774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2013 Dec;16(6):686-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23927895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Jun 5;51(22):4377-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22583368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 1998 Sep;66(9):4169-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9712764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 Nov;4(12):e410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycopathologia. 2005 Jan;159(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15750726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2012 Jul 16;10(8):525-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22796883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2017 Aug 4;292(31):12754-12763</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28615445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2017 Oct 31;8(5):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29089435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pharmacol. 2013 Oct;13(5):707-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23876838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antimicrob Chemother. 2012 Mar;67(3):715-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21937481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 30;281(26):17661-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>MBio. 2018 Dec 4;9(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30514787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Transl Med. 2012 Dec 19;4(165):165rv13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23253612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Cell Biol. 2015 Jul-Sep;94(7-9):292-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26116073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>mSphere. 2016 Jan 13;1(1):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27303693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Opin Drug Discov. 2012 Sep;7(9):831-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22812521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jul 9;279(28):29513-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2011 Jul;55(7):3156-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21518848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2009 Aug;22(4):615-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19214755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2017 Mar 22;9(3):215-227</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28217776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Nov 24;6(11):e1001209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21124817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2015 Jun;15(4):fov027</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26002841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Oct 17;5:5194</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25323068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Mycol. 2018 Jun 1;56(4):458-468</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29420779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virulence. 2018 Jan 1;9(1):426-446</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29261004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2011 Nov;10(11):1376-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21926328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2018 Aug 2;14(8):e1007220</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30071112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 1993 Jan;167(1):186-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8418165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2018 Jan 1;42(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29069482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2011 Feb;10(2):207-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21131439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virulence. 2017 Feb 17;8(2):159-168</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27191707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2013 Sep;21(9):457-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23810126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Aug;1854(8):1054-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25970810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2000 Jul;182(1):283-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10882608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2017 Nov;17(11):e334-e343</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28774701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Sep 30;6(9):e1001124</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20941352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2005 Jan;49(1):241-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15616301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Opin Investig Drugs. 2001 Feb;10(2):309-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11178343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2016 Nov 23;50:67-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27617971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Mar 18;280(11):10135-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15649888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 1995 Aug;39(8):1824-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7486926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12980-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19651610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2014 Jul;93(1):10-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24851950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 May 11;336(6082):647</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22582229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2017 Aug;17(8):873-881</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28483415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Mycol. 2002 Dec;40(6):581-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12521122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 Sep;5(9):e1000586</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19806177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Opin Ther Targets. 2016 Dec;20(12):1477-1489</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27797604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2017 Dec;40:152-159</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29179120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2014 Feb;34(4):673-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24324006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycobiology. 2014 Dec;42(4):427-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25606020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2017 Jul 31;8:1423</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28824559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Feb 19;6(2):e1000776</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20174553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2017 Aug 16;9(8):1096-1105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28725905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AIDS. 2009 Feb 20;23(4):525-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19182676</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Colombie-Britannique </li>
</region>
<settlement>
<li>Vancouver</li>
</settlement>
<orgName>
<li>Université de la Colombie-Britannique</li>
</orgName>
</list>
<tree>
<country name="Canada">
<region name="Colombie-Britannique ">
<name sortKey="Horianopoulos, Linda C" sort="Horianopoulos, Linda C" uniqKey="Horianopoulos L" first="Linda C" last="Horianopoulos">Linda C. Horianopoulos</name>
</region>
<name sortKey="Kronstad, James W" sort="Kronstad, James W" uniqKey="Kronstad J" first="James W" last="Kronstad">James W. Kronstad</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000184 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000184 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31085406
   |texte=   Connecting iron regulation and mitochondrial function in Cryptococcus neoformans.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31085406" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020